[논 문] 한국재료학회지 Korean Journal of Materials Research Vol. 14, No. 2 (2004)

SiH₂Cl₂와 O₃을 이용한 원자층 증착법에 의해 제조된 실리콘 산화막의 특성

이원준[†]·이주현*·한창희**·김운중·이연승***·나사균**

세종대학교 신소재공학과, *한국과학기술원 재료공학과 **한밭대학교 재료공학과, ***한밭대학교 정보통신컴퓨터공학부

Characteristics of Silicon Oxide Thin Films Prepared by Atomic Layer Deposition Using Alternating Exposures of SiH₂Cl₂ and O₃

Won-Jun Lee[†], Joo-Hyeon Lee^{*}, Chang-Hee Han^{**}, Un-Jung Kim, Youn-Seoung Lee^{***} and Sa-Kyun Rha^{**}

Department of Advanced Materials Engineering, Sejong University, 143-747, Seoul, Korea

*Department of Materials Sciences & Engineering, KAIST, Daejeon, 305-701, Korea

**Department of Materials Engineering, Hanbat National University, Daejeon, 305-719, Korea

***Division of Information Communication and Computer Engineering,

Hanbat National University, Daejeon, 305-719, Korea

(2003년 10월 17일 받음, 2004년 1월 7일 최종수정본 받음)

Abstract Silicon dioxide thin films were deposited on p-type Si (100) substrates by atomic layer deposition (ALD) method using alternating exposures of SiH₂Cl₂ and O₃ at 300°C. O₃ was generated by corona discharge inside the delivery line of O₂. The oxide film was deposited mainly from O₃ not from O₂, because the deposited film was not observed without corona discharge under the same process conditions. The growth rate of the deposited films increased linearly with increasing the exposures of SiH₂Cl₂ and O₃ simultaneously, and was saturated at approximately 0.35 nm/cycle with the reactant exposures over 3.6×10^9 L. At a fixed SiH₂Cl₂ exposure of 1.2×10^9 L, growth rate increased with O₃ exposure and was saturated at approximately 0.28 nm/ cycle with O₃ exposures over 2.4×10^9 L. The composition of the deposited film also varied with the exposure of O₃. The [O]/[Si] ratio gradually increased up to 2 with increasing the exposure of O₃. Finally, the characteristics of ALD films were compared with those of the silicon oxide films deposited by conventional chemical vapor deposition (CVD) methods. The silicon oxide films deposited by outperssure CVD (LPCVD) and atmospheric-pressure CVD (APCVD) at the deposition temperatures ranging from 400 to 800°C.

Key word thin films, dielectrics, oxides, X-ray photoelectron spectroscopy (XPS)

1. 서 론

최근 반도체 소자는 수평으로 크기를 줄임으로써 같은 면적 위에 더 많은 소자들을 집적하고, 수직으로 두께를 줄임으로써 소자의 동작속도를 향상시키고 보다 낮은 소 비전력을 구현하고 있다. 따라서 반도체 소자의 초고집 적화를 위한 제조공정은 초미세 패턴의 형성 기술과 함 께 나노(10⁹ m) 수준의 두께에서 균일하고 우수한 특성 을 갖는 극박막을 제조할 수 있는 새로운 중착기술을 절 실히 필요로 하고 있다. 원자층 중착(ALD, atomic layer deposition) 방법¹⁾은 반응 기체들을 개별적으로 분리하여 펄스 형태로 반응관에 공급하여 기판표면에서 self-limiting 표면반응을 통해 박막을 형성하기 때문에 두께 및 조성 을 정확히 제어할 수 있으며 복잡한 형상의 기판에서도

100%에 가까운 step coverage를 얻을 수 있는 장점이 있어 최근 폭넓은 연구개발이 진행되고 있다. 실리콘 산 화물(SiO2)은 반도체 소자 내에서 유전물질로서 가장 널 리 사용되어 온 재료로서,²⁾ SiO₂ 박막은 주로 700°C 이 상의 온도에서 저압화학기상증착(LPCVD, low-pressure chemical vapor deposition) 방법으로 증착되고 있으나 점 차 step coverage 및 공정온도 측면에서 그 한계에 다다 르고 있는 실정이다. 따라서 SiO, 박막의 증착에 ALD 방법을 적용함으로서 박막의 두께 균일도 및 물성을 향 상시키고 thermal budget을 감소시킴으로서 반도체 소자 의 특성을 향상시킬 수 있을 것으로 기대된다. 특히 매 우 얇은 두께에서 우수한 물성 및 step coverage가 요구 되는 gate의 spacer의 경우에 그 적용이 기대되고 있다.³⁾ Gasser등은 원료기체로서 Si(NCO)4와 수증기(H2O)를 이용하여 SiO₂ 박막을 증착하였는데, 25℃에서 원료기체 공급량이 각각 6.0×10⁹L (1 L = 10⁶ Torr · sec), 4.8×

[†]E-Mail : wjlee@sejong.ac.kr

10¹⁰L일 때 0.17 nm/cycle의 증착률을 얻었고, 전기적 특 성은 보고되지 않았다.⁴⁾ Klaus 등은 SiCl₄와 H₂O를 원 료기체로 이용하였는데, 327~527°C의 온도 구간에서 원 료기체 공급량이 10⁹L 이상일 때 0.075~0.11 nm/cycle 의 증착률과 1.46±0.02 의 굴절률을 얻었고,⁵⁾ Lewis base인 pyridine(C₃H₃N)과 NH₃를 촉매로서 첨가하면 보 다 낮은 온도와 낮은 원료기체 공급량에서도 박막 성장 률을 향상시킬 수 있었다.^{6,7)} 본 연구에서는 새로운 ALD 원료기체로서 SiH₂Cl₂와 ozone(O₃)/O₂ 혼합기체를 이용하 여 원자층 증착법에 의해 실리콘 산화막을 형성하고 증 착된 박막의 특성들을 분석하였고, 기존의 저압화학기상 증착법이나 상압화학기상증착법(APCVD, atmosphericpressure chemical vapor deposition)에 의해 증착된 실리 콘 산화막들과 특성을 비교 분석하였다.

SiH₂Cl₂ 및 O₃/O₂ 혼합기체는 기존 반도체 제조공정 에서 실리콘 산화막의 LPCVD 및 APCVD 증착 공정에 널리 사용되고 있는 원료기체들이나 아직까지 실리콘 산 화막의 ALD 공정에 적용된 사례가 발표된 바가 없었 고, 본 연구에서 최초로 ALD 공정에 적용되었다.

2. 실험 방법

Si 원료기체로는 SiH₂Cl₂(99.999%)를 사용하였고 O 원 료기체로는 H2O와 O2(99.999%), 그리고 O2를 공급하는 기체관 내에서 corona 방전을 일으켜 일부 분자를 O3로 만든 O₃/O₂ 혼합기체를 비교하였다. O₃/O₂ 혼합기체의 경 우 본 연구의 실험조건에서 반응관 내부로 유입되는 O3 농도는 UV 방식의 오존 농도 측정기(IN-USA)를 사용 하여 측정한 결과 O₂의 1.5 at%로 측정되었다. 증착을 위 한 기판으로는 p-type (100) Si wafer를 20 mm×25 mm 로 절단하여 사용하였고, Baker사의 6:1 BOE (buffered oxide etch) 용액으로 기판 표면의 자연 산화막을 제거 한 후에 반응관 내에 장입하였다. 원료기체를 순차적으 로 펄스 형태로 traveling wave 형태의 반응관에 주입하 여 박막을 증착하였다. 기판표면에 흡착하지 않은 기체 및 반응부산물을 효과적으로 제거하기 위하여 각 원료기 체들의 펄스 사이에 pumping과 N₂(99.999%) purge를 2회씩 반복한 다음 후속의 원료기체 펄스를 주입하였다.

증착된 박막의 두께와 굴절률은 Sentech사의 SE400 ellipsometer를 사용하여 파장 632.8 nm의 레이저를 70° 의 각도로 입사시켜 측정하였다. 성분분석을 위해서는 PHI model 5700의 XPS 시스템을 이용하였는데, 사용된 X-ray는 monochromatic Al K_α (1486.6 eV)이었다. 박막 의 막질을 상대적으로 평가하기 위해서 750:1로 희석된 HF 용액에서의 습식각률을 측정하였다. ALD 방식으로 증착된 박막과 기존의 LPCVD 및 APCVD 방법으로 형 성된 박막의 특성비교를 위하여 TEL사의 상용 CVD 장 비를 이용하여 실리콘 산화막을 증착하여 ALD 박막과 의 비교 분석에 사용하였는데, 자세한 공정조건은 Table 1에 나타내었다.

Table 1. Deposition conditions of various SiO_2 thin films in this study.

Deposition method	Precursors	Processing Temperature (°C)
Thermal oxidation	Si, H ₂ O	900
LPCVD	SiH ₄ , N ₂ O	820
LPCVD	$Si(OC_2H_5)_4, O_2$	740
APCVD	$Si(OC_2H_5)_4, O_3$	430
ALD	SiH ₂ Cl ₂ , H ₂ O	300
ALD	SiH ₂ Cl ₂ , O ₂	300
ALD	SiH ₂ Cl ₂ , O ₃	300

3. 결과 및 고찰

먼저 O 원료기체 종류에 따른 증착특성의 변화를 조 사하였다. Si 원료기체인 SiH2Cl2와 O 원료기체인 H2O, O₂, 또는 O₃/O₂ 혼합기체의 공급량을 10¹⁰L까지 증가시 키면서 300℃에서 실리콘 산화막을 증착한 결과, O₃/O₂ 혼합기체를 이용한 경우에는 박막 증착이 잘 되었으나 H₂O 및 O₂를 사용한 경우에는 박막 증착이 거의 일어 나지 않았다. H2O의 경우에는 공급량을 약 10¹¹L으로 크 게 증가시켜도 증착률이 0.086 nm/cycle에 불과하였고 굴 절률도 화학양론적인 SiO₂에 비해 다소 높은 1.58으로 측 정되었으며, 0,의 경우에는 형성된 박막의 두께가 너무 얇아서 두께와 굴절률을 측정할 수 없었다. 따라서, O₃/ O2 혼합기체를 이용한 경우에 SiO2 박막이 증착되는 것 은 전적으로 O₃에 의한 것이라고 추론할 수 있다. O₂ 만으로는 ALD 증착반응이 거의 일어나지 않는 저온에 서도 O₃에 의해서는 증착이 일어나는 것은 O₃의 분해 에 의해 형성되는 O radical이 O₂에 비해 반응성이 훨 씬 강하기 때문으로 판단된다.

Fig. 1에 300℃에서 원료기체 공급량의 증가에 따른 박막의 성장속도의 변화를 나타내었다. 원료기체의 공급 량이 증가함에 따라 박막 성장률이 증가하다가 3.6×10⁹L

Fig. 1. Growth rate and refractive index of the deposited film as a function of exposures of SiH_2Cl_2 and O_3/O_2 .

이상에서 약 0.35 nm/cycle로 포화되었다. 본 실험에서 얻 을 수 있었던 최대 증착률인 0.35 nm/cycle은 비정질 SiO₂에서 Si-O-Si의 거리인 약 0.32 nm²와 거의 같은 값이다. 한편, 박막의 굴절률은 원료기체 공급량을 증가 시킴에 따라서 약 1.7에서 약 1.5까지 점차 감소하였다. 이처럼 원료기체 공급량이 작을 때 화학양론적인 SiO₂ 박막의 굴절률인 1.46보다 높은 굴절률이 측정된 것으로 볼 때 원료기체 공급량이 작을 때에는 증착된 실리콘 산 화막의 조성이 화학양론적인 SiO₂와는 다를 것으로 판 단되었다.

다음으로는 SiH₂Cl₂의 공급량을 1.2×10⁹L으로 고정하 고 O₃/O₂ 혼합기체의 공급량을 점차 증가시키면서 증착 속도와 박막의 굴절률을 조사하였다. Fig. 2에 나타낸 바 와 같이 O₃/O₂ 혼합기체의 공급량이 0.4×10⁹L, 1.2× 10⁹L, 2.4×10⁹L, 6.0×10⁹L으로 증가함에 따라서 박막 성장률은 점차 증가하다가 약 0.28 nm/cycle에서 포화되 는 경향을 보여주었고, 박막의 굴절률은 1.7 이상에서 점 차 감소하다가 화학양론적인 SiO₂의 굴절률과 비슷한 1.50에서 포화되었다. 특히 O₃/O₂ 혼합기체의 공급량이 증 가할수록 증착속도 및 굴절률의 표준편차가 적은 균일한 박막을 얻을 수 있었다.

O₃/O₂ 혼합기체의 공급량에 따라 굴절률이 변화하는 현 상의 원인을 밝히기 위하여 Fig. 2에서 O₃/O₂ 공급량이 적을 때 (0.4×10⁹L)와 O₃/O₂ 공급량이 비교적 많을 때 (2.4×10⁹L)의 박막에 대해서 각각 XPS를 이용한 조성 분석을 실시하였다. Fig. 3에 Si 2p peak을 나타내었는 데, O₃/O₂ 공급량이 비교적 많을 때에는 화학양론적인 SiO₂와 동일한 binding 에너지 값을 나타내지만 O₃/O₂ 공급량이 적을 때에는 binding 에너지가 낮은 값으로 shift되어 Si-rich 산화막이 중착되었음을 확인할 수 있 다.⁸⁾ 따라서, Fig. 2에서 O₃/O₂ 혼합기체의 공급량이 적 을 때 굴절률이 증가하는 현상은 O₃/O₂ 혼합기체의 공

Fig. 2. Growth rate and refractive index of the deposited film as a function of O_3/O_2 exposure at a fixed SiH₂Cl₂ exposure of 1.2×10^9 L.

Fig. 3. Chemical shift of Si 2p peak in the deposited films with varying O_3/O_2 exposure.

급량이 적을 때 Si:O 조성비가 변화하기 때문으로 판 단된다. 또한, 화학양론적인 SiO₂ 박막을 증착하기 위해 서는 O₃/O₂ 혼합기체의 공급량이 충분히 커야하며, 만일 O₃/O₂ 혼합기체의 공급량이 충분하지 못하면 Si-rich 박 막이 형성되며 이에 따라 박막 내의 단일원자층의 두께 도 감소하기 때문에 증착 속도도 감소하는 것으로 판단 된다.

또한, O₃를 사용하여 증착한 굴절률이 1.50인 박막과 H₂O를 사용하여 증착한 굴절률이 1.58인 박막의 조성을 XPS를 이용하여 분석하였는데, Fig. 4에서 볼 수 있듯 이 굴절률이 1.50인 박막의 Si 2p peak은 열산화법에 의 해 제조된 SiO₂ 박막의 peak과 거의 같은 모습을 보이 지만, 굴절률이 1.58인 박막의 경우에는 Si 2p peak이 낮은 binding 에너지 값으로 shift 되는 것으로 볼 때 Si-rich oxide 박막으로 생각된다. 또한, Fig. 1에서 원료 기체 공급량이 작을 때 굴절률이 증가한 것도 Si-rich oxide 박막이 증착되었기 때문인 것으로 판단된다.

본 연구에서 ALD 방법에 의해 중착된 박막의 특성을 기존의 LPCVD 및 APCVD silicon oxide 박막과 비교 하기 위하여 조성, 습식각률 등을 비교하였다. 먼저 XPS 에 의해 조성을 분석한 결과, O₃/O₂ 혼합기체를 사용한 ALD 박막, 열산화막 및 모든 LPCVD 박막의 경우에는 Si 및 O 이외에 C나 CI과 같은 불순물은 검출되지 않 았고 Fig. 4에 나타낸 바와 같이 Si 2p peak이 103.2 eV의 binding 에너지를 가지므로 화학양론적인 SiO₂ 박 막임을 알 수 있었다. 그러나 금속유기물인 Si(OC₂H₅)4 을 원료기체로 사용한 APCVD 박막의 경우에는 박막표 면을 sputter cleaning한 후에도 계속 C peak이 검출되 었고 Fig. 4에서 Si 2p peak이 낮은 binding 에너지 값 으로 shift된 것으로 보아 Si-rich 박막이 형성된 것으로 판단된다. 한편, 각 박막의 XPS 스펙트럼으로부터 Si peak과 O peak의 면적의 비를 계산하여 [O]/[Si]의 조

Fig. 4. XPS Si 2p peaks of various silicon oxide thin films.

Fig. 5. Wet etch rate properties of silicon oxide thin films.

성비를 측정한 결과, O₃/O₂ 혼합기체를 사용한 ALD 박 막, 열산화막 및 모든 LPCVD 박막의 경우 [O]/[Si] 비 는 약 2로 측정되어 화학양론적인 실리콘 산화막임을 재 차 확인할 수 있고, APCVD 박막의 경우에는 [O]/[Si] 비가 약 1로 측정되어 Si-rich한 비화학양론적인 실리콘 산화막임을 확인할 수 있었다. 750:1로 희석된 HF 용 액을 습식각용액으로 사용하여 습식각 전후의 실리콘 산 화막의 두께 차이를 통해 습식각률을 측정한 결과, Fig. 5에서 볼 수 있듯이 열산화막이 0.17 nm/min으로 가장 낮은 값을 나타냈고, ALD 박막은 LPCVD와 APCVD 박막에 비해 낮은 0.35 nm/min의 값을 나타내었다. 따라 서 ALD 박막은 낮은 증착 온도에도 불구하고 LPCVD 및 APCVD 박막에 비해 치밀한 막질을 가진 것으로 판 단된다.

4. 결 론

Si 원료기체로 SiH₂Cl₂, O 원료기체로 H₂O, O₂, O₃/ O2 혼합기체를 이용하여 300℃에서 원자층 증착 방법으 로 박막을 형성하였다. 여러 가지 O 원료기체 중에서 O₃/O₂ 혼합기체가 박막 증착에 가장 효과적이었으며, O₃/ O₂의 공급량이 SiH₂Cl₂의 공급량보다 2배 이상일 때 화 학양론적인 실리콘 산화막 형성이 가능하였고, O₃/O₂의 공급량이 이보다 적을 때에는 Si-rich 박막이 증착되었 다. O₃에서 해리된 반응성 강한 O radical에 의해 기존 의 보고된 ALD SiO₂ 결과들에 비해 낮은 원료기체 공 급량에서 촉매를 사용하지 않고도 화학양론적인 실리콘 산화막을 증착할 수 있었고, 기존의 결과들에 비해 훨씬 높은 최고 0.35 nm/cycle의 증착 속도를 확보할 수 있었 다. 본 연구에서 원자층 증착된 박막의 조성 및 습식각 률을 기존의 LPCVD 및 APCVD 방법에 의해 증착된 박막들과 비교한 결과, 낮은 증착온도에서도 우수한 물 리적 특성을 갖는 실리콘 산화막을 형성할 수 있었다.

감사의 글

본 논문은 정보통신부 정보통신연구진흥원에서 지원하 고 있는 정보통신기초연구지원사업의 연구결과입니다.

참 고 문 헌

- M. Pessa, R. Makela and T. Suntola, Appl. Phys. Lett., 38, 131 (1981).
- J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology, ch. 6, Prentice Hall, Upper Saddle River, New Jersey, USA (2000).
- J. E. Park, J. H. Ku, J. W. Lee, J. H. Yang, K. S. Chu, S. H. Lee, M. H. Park, N. I. Lee, H. K. Kang and K. P. Suh, in Proceedings of the 10th Korean Conference on Semiconductors, D-05, 137 (2003).
- 4. W. Gasser, Y. Uchida and M. Matsumura, Thin Solid Films, **250**, 213 (1994).
- J. W. Klaus, A.W. Ott, J. M. Johnson and S. M. George, Appl. Phys. Lett., 70, 1092 (1997).
- J. W. Klaus, O. Sneh, A. W. Ott and S. M. George, Surf. Rev. Lett., 6, 435 (1999).
- 7. J. W. Klaus and S. M. George, Surf. Sci., 447, 81 (2000).
- K. Yamamoto and M. Nakazawa, Jpn. J. Appl. Phys., 33, 285 (1994).